Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alcohol Clin Exp Res (Hoboken) ; 48(2): 250-259, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38276909

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.

2.
Front Psychiatry ; 14: 1181321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426106

RESUMEN

PTSD is a prevalent mental disorder that results from exposure to extreme and stressful life events and comes at high costs for both the individual and society. Therapeutic treatment presents the best way to deal with PTSD-the mechanisms underlying change after treatment, however, remain poorly understood. While stress and immune associated gene expression changes have been associated with PTSD development, studies investigating treatment effects at the molecular level so far tended to focus on DNA methylation. Here we use gene-network analysis on whole-transcriptome RNA-Seq data isolated from CD14+ monocytes of female PTSD patients (N = 51) to study pre-treatment signatures of therapy response and therapy-related changes at the level of gene expression. Patients who exhibited significant symptom improvement after therapy showed higher baseline expression in two modules involved in inflammatory processes (including notable examples IL1R2 and FKBP5) and blood coagulation. After therapy, expression of an inflammatory module was increased, and expression of a wound healing module was decreased. This supports findings reporting an association between PTSD and dysregulations of the inflammatory and the hemostatic system and mark both as potentially treatment sensitive.

3.
Sci Rep ; 12(1): 17347, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253434

RESUMEN

DNA methylation patterns can be responsive to environmental influences. This observation has sparked interest in the potential for psychological interventions to influence epigenetic processes. Recent studies have observed correlations between DNA methylation changes and therapy outcome. However, most did not control for changes in cell composition. This study had two aims: first, we sought to replicate therapy-associated changes in DNA methylation of commonly assessed candidate genes in isolated monocytes from 60 female patients with post-traumatic stress disorder (PTSD). Our second, exploratory goal was to identify novel genomic regions with substantial pre-to-post intervention DNA methylation changes by performing whole-genome bisulfite sequencing (WGBS) in two patients with PTSD. Equivalence testing and Bayesian analyses provided evidence against physiologically meaningful intervention-associated DNA methylation changes in monocytes of PTSD patients in commonly investigated target genes (NR3C1, FKBP5, SLC6A4, OXTR). Furthermore, WGBS yielded only a limited set of candidate regions with suggestive evidence of differential DNA methylation pre- to post-therapy. These differential DNA methylation patterns did not prove replicable when investigated in the entire cohort. We conclude that there is no evidence for major, recurrent intervention-associated DNA methylation changes in the investigated genes in monocytes of patients with PTSD.


Asunto(s)
Metilación de ADN , Trastornos por Estrés Postraumático , Teorema de Bayes , Epigénesis Genética , Femenino , Humanos , Monocitos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/psicología
4.
Front Neurosci ; 7: 83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23734094

RESUMEN

Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR) promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...